比和比例
整体感知
本课主要复习比和比例的意义与性质、比例尺的知识。本节课知识的呈现是这样的:教材先把比和比例的意义和性质归纳整理成表,通过对比使学生弄清比和比例的概念,再通过“说一说”、“想一想”、“做一做”等形式进一步巩固所学知识。其中,求比值和化简比是学生容易混淆发生错误的地方,复习时应从“一般方法”和“结果”两方面加以比较,以便使学生形成清晰的概念,掌握“比较”的学习方法。在复习比例尺时,要使学生理解比例尺实际上是一个比,是图上距离和实际距离的比。着重训练学生能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离和实际距离。
教学内容:教材第101―103页,完成第101―102页和第103页上面的“做一做”,练习二十二的第1―9题。
素质教育目标
(一)知识教学点
1.理解比和比例的意义和及性质。
2.理解比例尺的含义。
(二)能力训练点
1.会化简比和求比值,会解比例。
2.能正确地解答有关比例尺的应用题。
(三)德育渗透点
引导学生探索知识间的联系,激发学生学习兴趣。
教学步骤
一、基本训练
二、归纳整理
1.比和比例的意义及性质
(1)教师引导学生回忆所学知识并完成下表:
(2)说一说,比和分数、除法有什么联系?根据学生的回答完成下表:
(3)提问:比的基本性质有什么作用?比例的基本性质呢?
引导学生小结几种比的化简方法:
①整数比化简,比的前项和后项同时除以它们的最大公约数。
②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。
③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。
④也可以用求比值的方法化简,求出比值后再写成比的形式。
例2 解比例 12∶x=8∶2
指名学生说出解法,教师板书。
(4)做教材第101页的“做一做”
①李师傅昨天6小时做了72个零件,今天8小时做了96个零件。写出李师傅昨天和今天所做零件个数的比和所用时间的比。这两个比能组成比例吗?为什么?
②甲数除以乙数的商是1.4,甲数和乙数的比是多少?
2.求比值和化简比
学生做完后,组织学生比较求比值和化简比的区别,并整理成下表:
(2)完成教材第102页“做一做”的题目,做完后集体订正。
3.比例尺
(1)教师出示一张中国地图,让学生观察后提问:
②什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)
(2)完成教材第103页上面的“做一做”的题目,做完后集体订正。
(3)反馈练习
在一幅地图上,用3厘米长的线段表示实际距离900千米。这幅地图的比例尺是多少?在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?
三、巩固发展
1.填空。
(1)根据右面的线段图,写出下面的比。
③甲数与甲乙两数和的比是( )。
④乙数与甲乙两数和的比是( )。
不变,后项应该( )。如果前项和后项都除以2,比值是( )。
(4)把(1吨)∶(250千克)化成最简整数比是( ),它的比值是( )。
(6)如果 a×3=b×5,那么 a∶b=( )∶( )
(7)如果a∶4=0.2∶7,那么a=( )
(9)甲数乙数的比是4∶5,甲数就是乙数的( )
2.选择正确答案的序号填在( )里。
(1)1克药放入100克水中,药与药水的比是( )。
①1∶99 ②1∶100 ③1∶101 ④100∶101
(2)一项工程,甲队单独做要10天,乙队单独做要8天。甲队和乙队工作效率的最简整数比是( )。
(4)有一天,某班的出勤率是90%,出勤人数和缺勤人数的比是( )
①9∶10 ②10∶9 ③1∶9 ④9∶1
(5)在一幅地图上用1厘米的线段表示5千米的实际距离,这幅地图的比例尺是( )
①1∶5 ②1∶5000 ③1∶500000
(6)用3、5、9、15这四个数组成的比例式是( )
①15∶3=5∶9 ②3∶5=∶15 ③15∶9=5∶3 ④9∶3=5∶15
①0.4千米 ②4千米 ③40千米
(8)大小两圆半径的比是3∶2它们的面积的比是( )
①3∶2 ②6∶4 ③9∶4
四、全课小结
提问:这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的问题?
五、布置作业 练习二十二的第4题、第6题、第9题。
六、板书设计
比和比例